糖尿病におけるデータベース駆動型医療研究への 応用を目的としたPHENOTYPING技術開発

中島直樹¹、野尻千夏¹、山下貴範¹、伊豆倉理江子¹、田嶼尚子² 1.九州大学病院メディカル・インフォメーションセンター、

2. 東京慈恵会医科大学・内科

データベース駆動型医療研究(DDMS)とは?

DDMS: Database-Driven Medical Study

従来

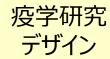
疫学研究 デザイン

疫学研究用DB

DDMS

電子カルテDB、 レセプトDBなど

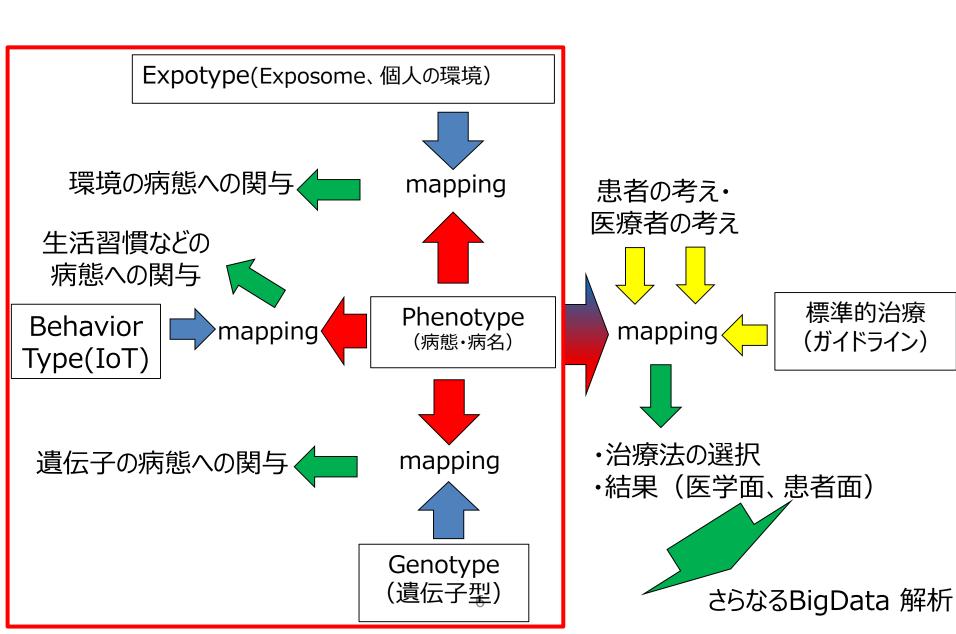
Real World Data


データ2次利用

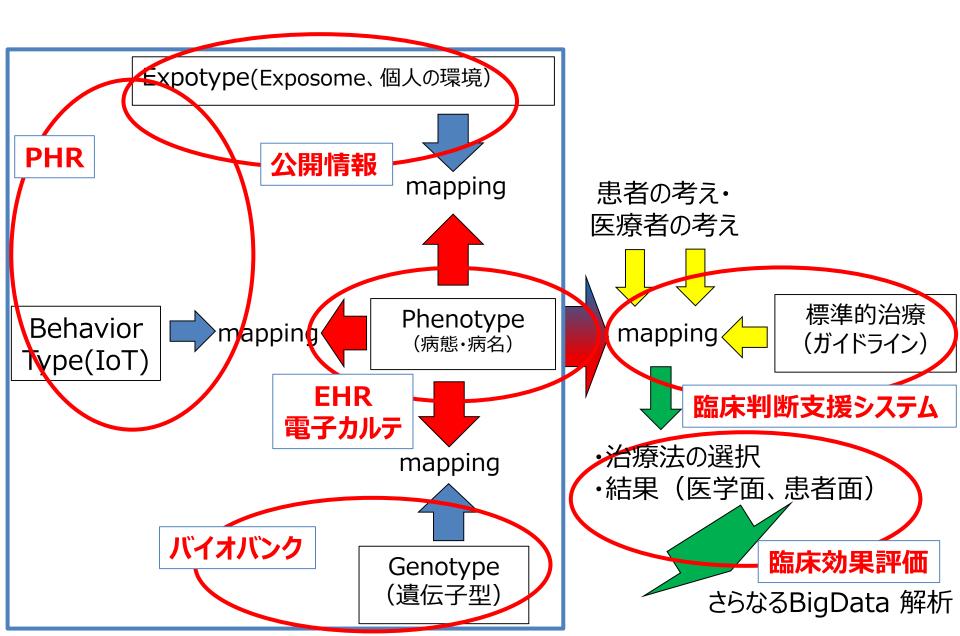
DDMSの例

データベース駆動型医療研究

- NDB:
 - ▶日本全体のレセプトと特定健診の突合データベース
- MID-NET :
 - 薬剤副作用の検知用データベース。10の大規模医療機関の電子カルテをネットワーク化
- J-DREAMS、J-CKD-DB、J-IMPACTなど
 - 臨床学会などが主催する電子カルテからデータを抽出する 疾患登録DB



この両者を駆使して、 正確に母集団を俯瞰し、 真実を把握するべき!


11SODB

研究の方法	自由度高い	自由度低い
バイアス	管理可能	DB構築目的に依存
データ品質	高い	低い(工夫要する)
コスト	高い	低い
データ規模	小さい	大きい
リアルタイム性	弱い	強い

Precision Medicineを目指すには

Precision Medicineを目指すには

疫学用DBと DDMSの比較

	疫学用DB	DDMSのDB
研究の方法	自由度高い	自由度低い
バイアス	管理可能	DB構築目的に依存
データ品質	高い	低い (工夫要する)
コスト	高い	低い
データ規模	小さい	大きい
リアルタイム性	弱し、	強い

現在の電子カルテによるPhenotypingの難易

- 容易な病態(高い検査頻度、採血検査)
 - 顆粒球減少症、白血球減少
 - 肝機能悪化(AST、ALTなどの上昇)

など

- ・ 難しい病態 1 (低い検査頻度、非採血検査)
 - 聴覚障害
 - うつ病
 - 認知症

など

- 難しい病態 2 (正しくない保険病名)
 - 胃潰瘍(PPIやH2ブロッカーの処方など)
 - 1型糖尿病 (頻回の自己血糖検査など)

など

1型糖尿病の社会的課題

- 1型糖尿病は、有病率さえ不明
- 小児慢性疾患であり、成人後は医療費負担が急増
- •1型糖尿病者の社会的状況が不明
 - 医療費負担
 - 学歴、就業率
 - 婚姻率
- 2015年に難病指定が強化されるも、社会状況が不明なうえ、有病率が分からなければ予算が組めず、難病指定さえもできない
- 調査の結果、A病院での「1型糖尿病」確定レセプト病名を持つ症例の真の1型糖尿病率(陽性的中度)は55%、感度は96%であった

厚生労働科学研究費補助金(循環器疾患・糖尿病等生活習慣病対策総合研究事業)

1型糖尿病の実態調査、客観的診断基準、 日常生活・社会生活に着目した重症度評価の作成に関する研究

H28-循環器等-一般-006

研究代表者 田嶼尚子(東京慈恵会医科大学・内科)

業務データベースを活用した1型糖尿病症例の抽出研究

■ データマイニングを用いた1型糖尿病かつインスリン 依存の抽出ロジックの策定 (平成28年7月)

分担研究者 中島 直樹 九州大学病院メディカル・インフォメーションセンター

Phenotyping開発方法

1) 2009年~2014年の5年間患者DB(219,486名)から1型糖尿病の可能性がある症例を傷病名(E10)などにて抽出

N=219,486 N=862

2) 院外の専門医から、当院へ 受診歴 のある1型糖尿病リスト取得 **(GS1)**

N=46、うち2名は1) と重複せず

3) 1) + 2) を3名の糖尿病専門医によりカルテレビュー

N = 864

- 4) 3)により1型糖尿病者(インスリン依存 の有無含む)を確定**(GS2)**
- 5) 3)に参加していない専門医(小児科、 内科)5名以上によるアルゴリズム作成
- 6) GS1、2を用いて感度、陽性的中率を算出しながら、機械学習法(GBDT)を用いて、精緻化

864名のカルテレビュー結果

確実に偽

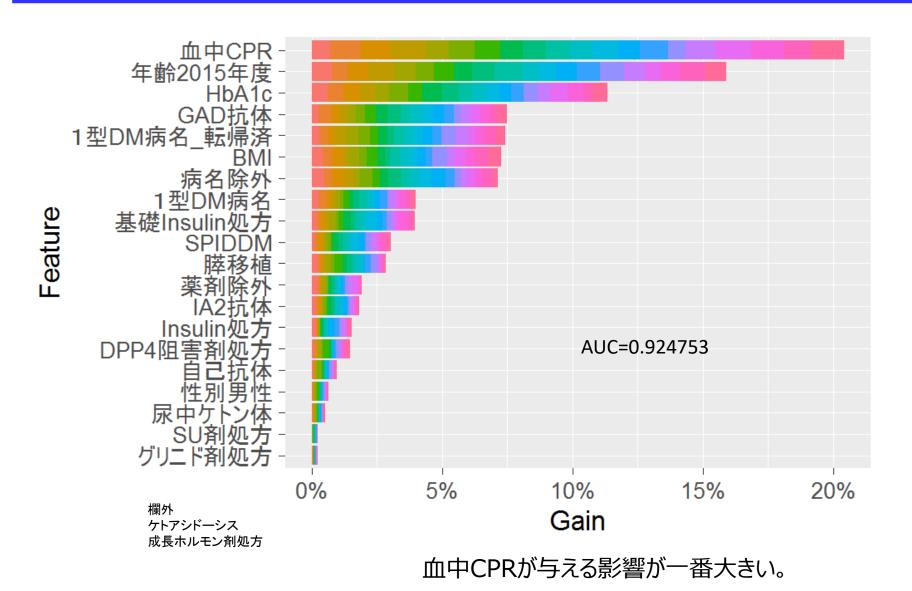
確実に真

			インスリン依存性			総計		
			1	2	3	4	5	形心百一
		1	262	11	6	12	35	326
	1	2	16	14		3	5	38
Ŧ		3	3	1	45	1	2	52
•	Š	4				2	2	4
		5	30	11	17	10	376	444
	Ş	総計	311	37	68	/ 28	420	864

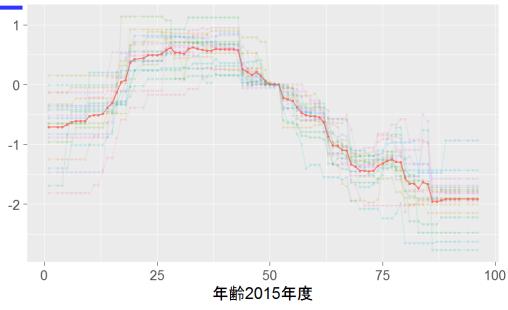
確実に偽

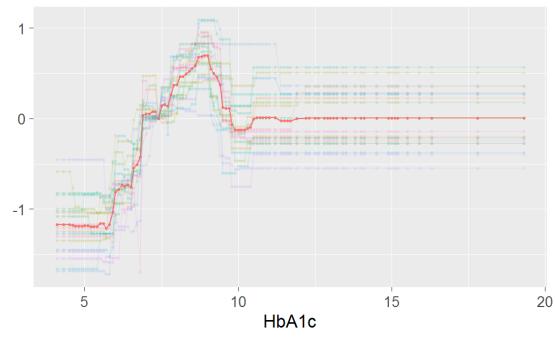
確実に真

390名


448名

1型糖尿病かつインスリン依存


1型糖尿病


勾配ブースティング法(GBDT)

目的変数: 1型DM

Partial Dependent Prot

電子カルテ情報を用いた1型糖尿病のPhenotyping

- (1)以下の、① AND (2OR3OR4OR5) または、2AND3AND4
 - ①1型糖尿病·確定診断
 - ②ケトアシドーシス病名・確定診断
 - ③インスリン処方
 - ④血中CPRが0.6ng/mL未満
 - ⑤膵臓移植・確定診断
- (2)以下の条件で除外 除外するべき疾患(表あり)病名より前に1型糖尿病病名登録 SU剤、グリニド剤、DPP4阻害剤の最終処方より前に1型糖尿病病名登録 「1型糖尿病」病名が死亡以外で転帰
- (3) 血中CPRが0.6ng/mL未満があれば(2)で除外しない 「膵移植」あるいは「緩徐進行1型糖尿病」病名があれば(2)で除外しない

	母数 (6年間)	ロジック 推定数	専門医 ル・1-判定	陽性 的中率
1型糖尿病保険傷病名 (確定)のみ	219,486	760	416	54.7%
上記ロジック	219,486	388	320	82.5%

Gold Standard	ロジック 推定数	感度
48	46	95.8%
48	40	83.3%

電子カルテ情報を用いた1型糖尿病かつインスリン依存症例のPhenotyping

- (1)以下の、① AND (②OR③OR④OR⑤) または、②AND③AND④
 - ①1型糖尿病·確定診断
 - ②ケトアシドーシス病名・確定診断
 - ③インスリン処方
 - ④血中CPRが0.6ng/mL未満
 - ⑤膵臓移植・確定診断
- (2)以下の条件で除外

除外疾患より前に1型糖尿病病名登録

SU剤、グリニド剤、DPP4阻害剤の最終処方より前に1型糖尿病病名登録「1型糖尿病」病名が死亡以外で転帰

インスリン処方が無い場合は除外

(3) 血中CPRが0.6ng/mL未満があれば(2)で除外しない
「膵移植」あるいは「緩徐進行1型糖尿病」病名があれば(2)で除外しない

	母数 (6年間)	ロジック 推定数	専門医 ル・1-判定	陽性 的中率
「1型糖尿病」抽出ロジック	219,486	388	297	76.5%
上記ロジック	219,486	348	288	82.8%

Gold Standard	ロジック 推定数	「「感度
48	40	83.3%
48	40	83.3%

レセプト情報のみを用いた1型糖尿病のPhenotyping

- (1)以下の、① AND (2OR3OR4OR5) または、2AND3AND4
 - ① 1 型糖尿病・確定診断
 - ②ケトアシドーシス病名・確定診断
 - ③インスリン処方
 - ④血申CPRが0.6ng/mL未満
 - ⑤膵臓移植・確定診断
- (2)以下の条件で除外

除外するべき疾患(表あり)病名より前に1型糖尿病病名登録 SU剤、グリニド剤、DPP4阻害剤の最終処方より前に1型糖尿病病名登録 「1型糖尿病」病名が死亡以外で転帰

(3) 血中CPRが0.6ng/mL未満があれば(2)で除外しない「膵移植」あるいは「緩徐進行1型糖尿病」病名があれば(2)で除外しない

	母数 (6年間)	ロジック 推定数	専門医 レビュー判定	陽性 的中率
1型糖尿病保険傷病名 (確定)のみ	219,486	760	416	54.7%
上記ロジック	219,486	344	284	82.6%

Gold Standard	ロジック 推定数	感度
48	46	95.8%
48	39	81.3%

レセプト情報のみを用いた1型糖尿病かつインスリン依存症例の Phenotyping

- (1)以下の、① AND (2OR3OR4OR5) または、2AND3AND4
 - ①1型糖尿病·確定診断
 - ②ケトアシドーシス病名・確定診断
 - ③インスリン処方
 - ④膵臓移植・確定診断
- (2)以下の条件で除外

SU剤、グリニド剤、DPP4阻害剤の最終処方より前に1型糖尿病病名登録「1型糖尿病」病名が死亡以外で転帰

インスリン処方が無い場合は除外

(3)—「膵移植」あるいは「緩徐進行1型糖尿病」病名があれば(2)で除外しない

	母数 (6年間)	ロジック 推定数	専門医 ル゛ı-判定	陽性 的中率
「1型糖尿病」 抽出ロジック	219,486	344	268	77.9%
上記ロジック	219,486	298	240	80.5%

Gold Standard	ロジック 推定数	感度
48	39	81.3%
48	38	79.2%

Phenotypingの応用

九大病院HIS

病名、処方、検査結果を 含めた抽出ロジックの策定

抽出ロジック

患者DBより抽出ロジック を用いた候補抽出

> 連携医からの GSの提出

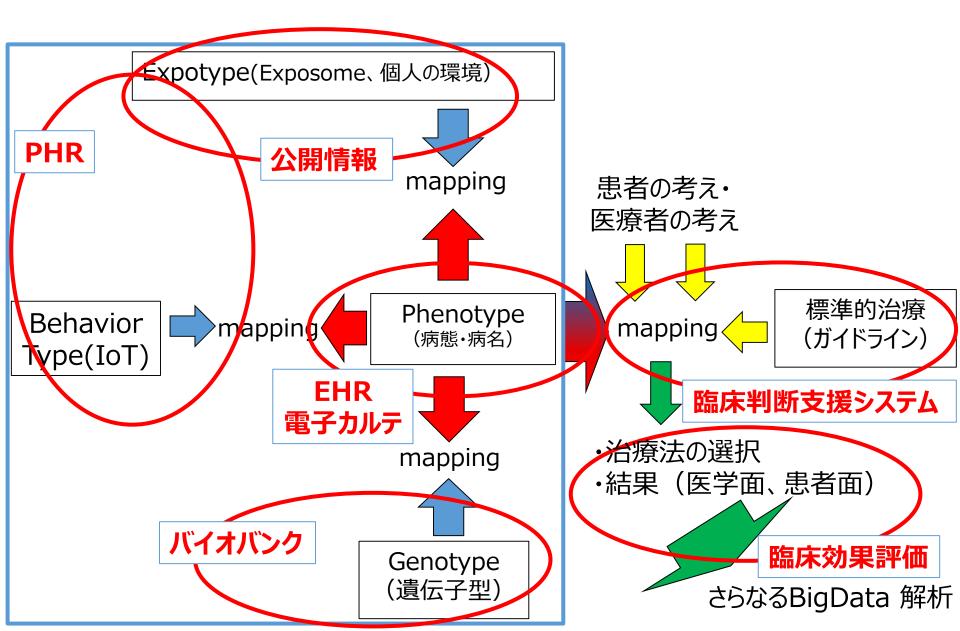
カルテレビュー

感度・陽性的中率算定 抽出ロジック改訂

普遍性検証

他病院で感度・陽性的中率算定

レセプトの情報(検査結果が存在しない)の感度・陽性的中率を算定(但し、検査結果以外の情報は保険者が保有する情報が網羅性が高い)


その他の目的

大型保険者DB または NDB

日本全体あるいは地域別・年代別の1型糖尿病(インスリン依存)有病率、医療費、などの把握

九大病院の1型糖尿 病の詳細な臨床研究 (治験など)

Precision Medicineを目指すには

まとめ

- DDMSにはPhenotypingの精緻化が重要
 - ・副作用を正確に把握(MID-NET)
 - 多くのDB事業などに用いられる(疾患登録DBなど)

- ・次世代電子カルテでは、正確なPhenotypingのリアルタイムな出力が期待される
 - ゲノムDB、IoT-DB、環境DBとの整合も重要
 - Precision Medicineの実現に重要

Phenotyping技術を高めて、DDMSを推進しましょう

ご清聴ありがとうございました

ご質問は、nnaoki@info.med.Kyushu-u.ac.jpへ